logo adaptive

PyPI Conda Downloads Pipeline status DOI Binder Gitter Documentation Coverage GitHub

Adaptive: parallel active learning of mathematical functions.

adaptive is an open-source Python library designed to make adaptive parallel function evaluation simple. With adaptive you just supply a function with its bounds, and it will be evaluated at the “best” points in parameter space, rather than unecessarily computing all points on a dense grid. With just a few lines of code you can evaluate functions on a computing cluster, live-plot the data as it returns, and fine-tune the adaptive sampling algorithm.

adaptive shines on computations where each evaluation of the function takes at least ≈100ms due to the overhead of picking potentially interesting points.

Run the adaptive example notebook live on Binder to see examples of how to use adaptive or visit the tutorial on Read the Docs.