adaptive.DataSaver#
The DataSaver
class#
- class adaptive.DataSaver(learner: LearnerType, arg_picker: Callable)[source]#
Bases:
BaseLearner
Save extra data associated with the values that need to be learned.
- Parameters:
learner (
BaseLearner
instance) – The learner that needs to be wrapped.arg_picker (function) – Function that returns the argument that needs to be learned.
Example
Imagine we have a function that returns a dictionary of the form:
{'y': y, 'err_est': err_est}
.>>> from operator import itemgetter >>> _learner = Learner1D(f, bounds=(-1.0, 1.0)) >>> learner = DataSaver(_learner, arg_picker=itemgetter('y'))
- load_dataframe(df: DataFrame, with_default_function_args: bool = True, function_prefix: str = 'function.', extra_data_name: str = 'extra_data', input_names: tuple[str, ...] = (), **kwargs) None [source]#
Load the data from a
pandas.DataFrame
into the learner.- Parameters:
df (pandas.DataFrame) – DataFrame with the data to load.
extra_data_name (str, optional) – The
extra_data_name
used into_dataframe
, by default “extra_data”.input_names (tuple[str], optional) – The input names of the child learner. By default the input names are taken from
df.attrs["inputs"]
, however, metadata is not preserved when saving/loading a DataFrame to/from a file. In that case, the input names can be passed explicitly. For example, for a 2D learner, this would beinput_names=('x', 'y')
.**kwargs (dict) – Keyword arguments passed to each
child_learner.load_dataframe(**kwargs)
.
- loss(*args, **kwargs)[source]#
Return the loss for the current state of the learner.
- Parameters:
real (bool, default: True) – If False, return the “expected” loss, i.e. the loss including the as-yet unevaluated points (possibly by interpolation).
- tell(x: Any, result: Any) None [source]#
Tell the learner about a single value.
- Parameters:
x (A value from the function domain) –
y (A value from the function image) –
- tell_pending(x: Any) None [source]#
Tell the learner that ‘x’ has been requested such that it’s not suggested again.
- to_dataframe(with_default_function_args: bool = True, function_prefix: str = 'function.', extra_data_name: str = 'extra_data', **kwargs: Any) DataFrame [source]#
Return the data as a concatenated
pandas.DataFrame
from child learners.- Parameters:
- Return type:
pandas.DataFrame
- Raises:
ImportError – If
pandas
is not installed.
The make_datasaver
function#
- adaptive.make_datasaver(learner_type, arg_picker)[source]#
Create a
DataSaver
of a learner_type that can be instantiated with the learner_type’s key-word arguments.- Parameters:
learner_type (
BaseLearner
type) – The learner type that needs to be wrapped.arg_picker (function) – Function that returns the argument that needs to be learned.
Example
Imagine we have a function that returns a dictionary of the form:
{'y': y, 'err_est': err_est}
.>>> from operator import itemgetter >>> DataSaver = make_datasaver(Learner1D, arg_picker=itemgetter('y')) >>> learner = DataSaver(function=f, bounds=(-1.0, 1.0))
Or when using
adaptive.BalancingLearner.from_product
:>>> learner_type = make_datasaver(adaptive.Learner1D, ... arg_picker=itemgetter('y')) >>> learner = adaptive.BalancingLearner.from_product( ... jacobi, learner_type, dict(bounds=(0, 1)), combos)